Time-Series Prediction: Application to the Short-Term Electric Energy Demand
نویسندگان
چکیده
This paper describes a time-series prediction method based on the kNN technique. The proposed methodology is applied to the 24hour load forecasting problem. Also, based on recorded data, an alternative model is developed by means of a conventional dynamic regression technique, where the parameters are estimated by solving a least squares problem. Finally, results obtained from the application of both techniques to the Spanish transmission system are compared in terms of maximum, average and minimum forecasting errors.
منابع مشابه
Short term electric load prediction based on deep neural network and wavelet transform and input selection
Electricity demand forecasting is one of the most important factors in the planning, design, and operation of competitive electrical systems. However, most of the load forecasting methods are not accurate. Therefore, in order to increase the accuracy of the short-term electrical load forecast, this paper proposes a hybrid method for predicting electric load based on a deep neural network with a...
متن کاملShort Term Load Forecasting Using Empirical Mode Decomposition, Wavelet Transform and Support Vector Regression
The Short-term forecasting of electric load plays an important role in designing and operation of power systems. Due to the nature of the short-term electric load time series (nonlinear, non-constant, and non-seasonal), accurate prediction of the load is very challenging. In this article, a method for short-term daily and hourly load forecasting is proposed. In this method, in the first step, t...
متن کاملForecasting Electric Energy Demand using a Predictor Model based on Liquid State Machine
Electricity demand forecasts are required by companies who need to predict their customers’ demand, and by those wishing to trade electricity as a commodity on financial markets. It is hard to find the right prediction method for a given application if not a prediction expert. Recent works show that Liquid State Machines (LSMs) can be applied to the prediction of time series. The main advantage...
متن کاملStochastic Multiperiod Decision Making Framework of an Electricity Retailer Considering Aggregated Optimal Charging and Discharging of Electric Vehicles
This paper proposes a novel decision making framework for an electricity retailer to procure its electric demand in a bilateral-pool market in presence of charging and discharging of electric vehicles (EVs). The operational framework is a two-stage programming model in which at the first stage, the retailer and EV aggregator do their medium-term planning. Determination of retailer's optimum sel...
متن کاملShort term load forecast by using Locally Linear Embedding manifold learning and a hybrid RBF-Fuzzy network
The aim of the short term load forecasting is to forecast the electric power load for unit commitment, evaluating the reliability of the system, economic dispatch, and so on. Short term load forecasting obviously plays an important role in traditional non-cooperative power systems. Moreover, in a restructured power system a generator company (GENCO) should predict the system demand and its corr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003